当前位置: 首页 > 生活百科 > 学习帮助 > 三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.证明:CD⊥AB且AC=BC.

三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.证明:CD⊥AB且AC=BC.

网站编辑:宽屏壁纸网 发布时间:2022-08-13  点击数:
导读:三棱锥V-ABC中,VO平面ABC,O∈CD,VA=VB,AD=BD.证明:CDAB且AC=BC. xtsyx 1年前他留下的回答 已收到1个回答 红蓝qq 网友 该...

三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.证明:CD⊥AB且AC=BC.

xtsyx 1年前他留下的回答 已收到1个回答

红蓝qq 网友

该名网友总共回答了24个问题,此问答他的回答如下:采纳率:95.8%

解题思路:由已知中三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.根据等腰三角形“三线合一”的性质及线面垂直的判定与性质,可证明出AB⊥平面VCD,进而得到CD⊥AB,再由三角形全等的判定定理,得到△ADC≌△BDC,再由三角形全等的性质得到对应边相等即AC=BC.

证明:VA=VB,AD=BD⇒VD⊥AB,
VO⊥平面ABC,AB⊂平面ABC上⇒VO⊥AB
⇒AB⊥平面VCD,CD⊂平面VCD⇒AB⊥CD
即CD⊥AB
又AD=BD,CD=CD,∠BDC=∠ADC=90°⇒
△ADC≌△BDC⇒AC=BC

点评:
本题考点: 直线与平面垂直的性质.

考点点评: 本题考查的知识点是直线 与平面垂直的性质,主要考查平面几何等腰三角形及全等三角形的性质及空间线面关系的判定及性质,属基础题.

1年前他留下的回答

1

  以上就是小编为大家介绍的三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD.证明:CD⊥AB且AC=BC. 的全部内容,如果大家还对相关的内容感兴趣,请持续关注宽屏壁纸网!

  标签:
内容声明:网站所展示的内容均由第三方用户投稿提供,内容的真实性、准确性和合法性均由发布用户负责。诚智拓展网对此不承担任何相关连带责任。诚智拓展网遵循相关法律法规严格审核相关关内容,如您发现页面有任何违法或侵权信息,欢迎向网站举报并提供有效线索,我们将认真核查、及时处理。感谢您的参与和支持!
浏览此文的人还看过
(a+b-c)的2m次方(a-
(a+b-c)的2m次方(a-

详情:(a+b-c)的2m次方(a-b-c)的2m+1次方(c-a......

文化作文关于辛弃疾的600字左
文化作文关于辛弃疾的600字左

详情:文化作文关于辛弃疾的600字左右 ......

(急啊!)如图所示,是一个正方
(急啊!)如图所示,是一个正方

详情:(急啊!)如图所示,是一个正方体的展开图 ......

《为你打开一扇门》课文理解 语
《为你打开一扇门》课文理解 语

详情:《为你打开一扇门》课文理解 语段分析 ......

相关网站推荐 大家装修网

  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 真武山公墓
  • 大朗陵园
  • 北京墓地
  • 成都墓地
  • 院山公墓
  • 卧龙寺
  • 长松寺
  • 凤凰陵园
  • 白塔山公墓
  • 宝光塔陵公墓
  • 红枫艺术陵园
  • 金沙陵园
  • 金土坡公墓
  • 燃灯寺
  • 莲花公墓
  • 真武山公墓
  • 大朗陵园
  • 院山公墓
  • 卧龙寺
  • 长松寺
  • 凤凰陵园
  • 白塔山公墓
  • 宝光塔陵公墓
  • 红枫艺术陵园
  • 金沙陵园
  • 北京墓地
  • 成都墓地
  • 金土坡公墓
  • 燃灯寺
  • 莲花公墓
  • 北京海葬