本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网
_过眼云烟 网友
该名网友总共回答了18个问题,此问答他的回答如下:采纳率:94.4%
解题思路:先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=[1/2]CA即CM=2BM.证法1:如答图所示,连接AM,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=30°,
∵MN是AB的垂直平分线,
∴BM=AM,∴∠BAM=∠B=30°,
∴∠MAC=90°,
∴CM=2AM,
∴CM=2BM.
证法二:如答图所示,过A
作AD∥MN交BC于点D.
∵MN是AB的垂直平分线,
∴N是AB的中点.
∵AD∥MN,
∴M是BD的中点,即BM=MD.
∵AC=AB,∠BAC=120°,
∴∠B=∠C=30°,
∵∠BAD=∠BNM=90°,
∴AD=[1/2]BD=BM=MD,
又∵∠CAD=∠BAC-∠BAD=120°-90°=30°,
∴∠CAD=∠C,
∴AD=DC,BM=MD=DC,
∴CM=2BM.
点评:
本题考点: 线段垂直平分线的性质.
考点点评: 此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
1年前他留下的回答
2e___uz1640up5531 网友
该名网友总共回答了337个问题,此问答他的回答如下:
这是一个错误命题,1年前他留下的回答
1以上就是小编为大家介绍的已知:如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC,AB于点M,N,求证:CM=2BM 的全部内容,如果大家还对相关的内容感兴趣,请持续关注宽屏壁纸网!
详情:创造性思维的特征是什么 ......
详情:小学六年级怎样写读书笔记教学设计 ......
详情:数学书封面是什么形,方桌的桌面是什么形 ......
详情:改变语序使句子意思不变小花在冷风冷雨中开放了. ......
本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网