本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网
西瓜瓤儿 网友
该名网友总共回答了9个问题,此问答他的回答如下:采纳率:88.9%
解题思路:经观察,([π/3]+4x)+([π/6]-4x)=[π/2],从而利用诱导公式及三角函数中的恒等变换可将原式化为y=2sin(4x+[π/3]),从而可求其周期、单调区间及最大、最小值.∵([π/3]+4x)+([π/6]-4x)=[π/2],
∴cos(4x-[π/6])=cos([π/6]-4x)=sin([π/3]+4x),
∴原式就是y=2sin(4x+[π/3]),这个函数的最小正周期为[2π/4],即T=[π/2].
当-[π/2]+2kπ≤4x+[π/3]≤[π/2]+2kπ(k∈Z)时函数单调递增,所以函数的单调递增区间为[-[5π/24]+[kπ/2],[π/24]+[kπ/2]](k∈Z).
当[π/2]+2kπ≤4x+[π/3]≤[3π/2]+2kπ(k∈Z)时函数单调递减,所以函数的单调递减区间为[[π/24]+[kπ/2],[7π/24]+[kπ/2]](k∈Z).
当x=[π/24]+[kπ/2](k∈Z)时,ymax=2;
当x=-[5π/24]+[kπ/2](k∈Z)时,ymin=-2.
点评:
本题考点: 三角函数中的恒等变换应用.
考点点评: 本题考查诱导公式及三角函数中的恒等变换,观察到“([π/3]+4x)+([π/6]-4x)=[π/2]”是关键,也是解题中的亮点,属于中档题.
1年前他留下的回答
5以上就是小编为大家介绍的求函数y=sin([π/3]+4x)+cos(4x-[π/6])的周期、单调区间及最大、最小值. 的全部内容,如果大家还对相关的内容感兴趣,请持续关注宽屏壁纸网!
详情:降水的方法有哪些?其适用范围是什么? ......
详情:·求:(最好可以每一条的物理公式分别列出,最重要得是要初三的......
详情:是不是吸电子基团就一定钝化苯环 ......
详情:怎样判断物体的内能是否改变?物体的内能是指物体内所有的动能和......
本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网