当前位置: 首页 > 生活百科 > 学习帮助 > 如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.

如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.

网站编辑:宽屏壁纸网 发布时间:2022-08-13  点击数:
导读:如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF. demon605 1年前他留下的回答 已收到1个回答 得未曾有 网友 该名网...

如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.

demon605 1年前他留下的回答 已收到1个回答

得未曾有 网友

该名网友总共回答了16个问题,此问答他的回答如下:采纳率:93.8%

解题思路:有两种解法:
①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.
②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.

证明:∵AD是△ABC的中线,
∴BD=CD.
方法一:延长AD至点M,使MD=FD,连接MC,
在△BDF和△CDM中,


BD=CD
∠BDF=∠CDM
DF=DM
∴△BDF≌△CDM(SAS).
∴MC=BF,∠M=∠BFM.
∵EA=EF,
∴∠EAF=∠EFA,
∵∠AFE=∠BFM,
∴∠M=∠MAC,
∴AC=MC,
∴BF=AC;
方法二:延长AD至点M,使DM=AD,连接BM,
在△ADC和△MDB中,


BD=CD
∠BDM=∠CDA
DM=DA,
∴△ADC≌△MDB(SAS),
∴∠M=∠MAC,BM=AC,
∵EA=EF,
∴∠CAM=∠AFE,而∠AFE=∠BFM,
∴∠M=∠BFM,
∴BM=BF,
∴BF=AC.

点评:
本题考点: 全等三角形的判定与性质.

考点点评: 本题考查了三角形全等的判定及性质、等腰三角形的性质.其中普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,解决此题的关键是作出巧妙的辅助线:倍长中线.

1年前他留下的回答

4

  以上就是小编为大家介绍的如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF. 的全部内容,如果大家还对相关的内容感兴趣,请持续关注宽屏壁纸网!

  标签:
内容声明:网站所展示的内容均由第三方用户投稿提供,内容的真实性、准确性和合法性均由发布用户负责。诚智拓展网对此不承担任何相关连带责任。诚智拓展网遵循相关法律法规严格审核相关关内容,如您发现页面有任何违法或侵权信息,欢迎向网站举报并提供有效线索,我们将认真核查、及时处理。感谢您的参与和支持!
浏览此文的人还看过
求老师解答:--- What
求老师解答:--- What

详情:求老师解答:--- What made Julia ......

孔子的谚语20个快
孔子的谚语20个快

详情:孔子的谚语20个快 ......

欣喜若狂在现代汉语词典上的意思
欣喜若狂在现代汉语词典上的意思

详情:欣喜若狂在现代汉语词典上的意思是什么? ......

五年级英语复习提纲
五年级英语复习提纲

详情:五年级英语复习提纲 ......

相关网站推荐 大家装修网

  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 长城华人怀思堂
  • 清东陵万佛园
  • 九里山二区公墓
  • 施孝园
  • 华夏陵园
  • 中华永久陵园
  • 珍珠源公墓
  • 灵山宝塔陵园
  • 真武山公墓
  • 大朗陵园
  • 北京墓地
  • 成都墓地
  • 院山公墓
  • 卧龙寺
  • 长松寺
  • 凤凰陵园
  • 白塔山公墓
  • 宝光塔陵公墓
  • 红枫艺术陵园
  • 金沙陵园
  • 金土坡公墓
  • 燃灯寺
  • 莲花公墓
  • 真武山公墓
  • 大朗陵园
  • 院山公墓
  • 卧龙寺
  • 长松寺
  • 凤凰陵园
  • 白塔山公墓
  • 宝光塔陵公墓
  • 红枫艺术陵园
  • 金沙陵园
  • 北京墓地
  • 成都墓地
  • 金土坡公墓
  • 燃灯寺
  • 莲花公墓
  • 北京海葬